39-49

UDC 612.171.1
DOI: 10.15350/2306-2819.2018.3.39

A COMPARISON OF 5 ALGORITHMS FOR R PEAKS DETECTION
IN AN ECG SIGNAL

M. S. Dahwah, A. N. Leukhin
Mari State University,
1, Lenin Square, Yoshkar-Ola, 424000, Russian Federation
E-mail: eng_dahwah@yahoo.com; Leukhinan@list.ru



АННОТАЦИЯ


Introduction. An electrocardiogram (ECG) is one of the most common biological signals, which plays a significant role in the diagnosis of heart diseases. Among all the waves, a QRS complex is the most significant wave of an ECG signal in which an R wave is one of the most important sections of this complex that has an essential role in the diagnosis of heart diseases. Various methods of digital signal processing are applied for detecting different ECG components. Among all algorithms of the ECG analysis and processing, the Pan & Tompkins algorithm, a Savitzky-Golay smoothing filter, Hilbert and wavelet transforms have been considered. One of the most relevant tasks in the automatic ECG analysis is the detection of each wave, particularly the QRS complex. Therefore, the purpose of this paper is to make a comparison of currently existing methods of ECG pattern recognition. The following problems are considered in this paper: 1) the theoretical analysis of electrocardiogram processing and peaks detection; 2) the comparative analysis of the efficiency of selected algorithms, providing the best sensitivity and precision in R peaks detection: the Pan & Tompkins algorithm, the Savitzky-Golay smoothing filter, Hilbert and wavelet transforms as well as a fast Fourier transform method. ECG signals from the MIT-BIH database are used for computer simulation and the comparative analysis of algorithms. The introduction is presented in section 1. The review of five methods is given in section 2. Results of the comparative analysis are presented in section 3. In each peaks detection algorithm there are two main stages: preprocessing and decision. Results. The conducted experiments showed that all five algorithms allow solving the problem of detecting R peaks of ECG signals when selecting the adaptive threshold value of the detector with a very high degree of confidence. It was shown that the Pan & Tompkins algorithm and the algorithm, based on the wavelet transform have the best characteristics of R peaks detection in comparison with other algorithms.

КЛЮЧЕВЫЕ СЛОВА

electrocardiogram; Hilbert transform; R peak; wavelet transform; fast Fourier transform; Pan & Tompkins; Savitzky-Golay filter.

ПОЛНЫЙ ТЕКСТ (pdf)

ФИНАНСИРОВАНИЕ


СПИСОК ЛИТЕРАТУРЫ


1. Khayer M.A., Haque M.A. ECG Peak Detection using Wavelet Transform. International Conference on Electrical Computer Engineering. 2004. No 3. Pp. 518-521.

2. J. Fraden M.R. Neuman Med. QRS wave detection. Medical and Biological Engineering and Computing. 1980. Vol 18. Pp.125-132.

3. Pan J., Tompkins W. J. A Real-Time QRS Detection Algorithm. IEEE Transactions on Biomedical Engineering. 1985. Vol. 32. Pp.230-236.

4. François Portet, Guy Carrault. Piloting real-time QRS detection algorithms in variable contexts. European Medical & Biological Engineering Conference. 2005. No 3. Pp.1-7.

5. Okada M. A digital filter for the QRS complex detection. IEEE Trans Biomed Eng. 1979. Vol. 26. Pp. 700-703.

6. Engelse WA, Zeelenberg C. A single scan algorithm for QRS detection and feature extraction. IEEE Comput Cardiology. Long Beach, CA: IEEE Computer Society, 1979. Vol. 6. Pp.37-42.

7. Hamilton PS, Tompkins WJ. Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmic database. IEEE Trans Biomed Eng. 1986. Pp. 57–65. 

8. Keselbrener L, Keselbrener M, Akselrod S. Nonlinear high pass filter for R-wave detection in ECG signal. Med Eng Phys. 1997. Vol. 19. No 5. Pp.738–741.

9. Suppappola S, Sun Y. Nonlinear transforms of ECG signals for digital QRS detection: A quantitative analysis. IEEE Trans Biomed Eng. 1994. Vol. 41. Pp. 397-400.

10. Dokur Z, Olmez T, Yazgan E, Ersoy OK. Detection of ECG waveforms by neural networks. Med Eng Phys. 1997. Vol. 19. No 8. Pp. 738–741.

11. Barro S, Fernandez-Delgado M, Vila-Sobrino JA, Regueiro CV, Sanchez E. Classifying multichannel ECG patterns with an adaptive neural network. IEEE Eng Med Biol Mag. 1998. Vol.19. Pp.45-55.

12. Fernandez-Delgado M, Barro Ameneiro S. MART. A multichannel ART-based neural network. IEEE Trans Neural Netw. 1998. Vol. 9. Pp.139-150.

13. Hossein Rabbani, M. Parsa Mahjoob, E. Farahabadi, A. Farahabadi. R Peak Detection in Electrocardiogram Signal Based on an Optimal Combination of Wavelet Transform, Hilbert Transform, and Adaptive Thresholding. J Med Signals Sens. 2011. Vol. 2. Pp.91-98.

14. Sathyapriya L., Murali L., Manigandan T. Analysis and Detection R-Peak Detection using Modified Pan-Tompkins Algorithm. IEEE International Con­ference on Advanced Communication Control and Computing Technologies, 2014. Ramanathapuram. Pp. 483-487.

15. Ahlstrom M. L., Tompkins W. J. Digital Filters for Real-Time ECG Signal Processing Using Microprocessors. IEEE Transaction on Biomedical Engineering. Vol.32, No 9 (March 2007). Pp.708-713.

16. Arzeno N., Deng Z., Poon C. Analysis of First Derivative Based QRS Detection Algorithms. IEEE Transactions on Biomedical Engineering. 2008. Vol. 55. No 2. Pp.478-484.

17. Kohler BU, Hennig C, Orlgmeister R. The principles of software QRS detection. IEEE Eng. Med. Biol. Mag. 2002. Vol. 21. No 1. Pp.42-57.

18. Abibullaev B, Seo H. A new qrs detection method using wavelets and artificial neural networks. J Med Syst. 2011. Vol. 35. No 4. Pp.683-691.

19. Chen SW, Chen HC, Chan HL. A real-time QRS detection method based on moving-averaging incorporating with wavelet denoising. Comput Meth Prog Bio. 2006. Vol. 82. No 3. Pp. 187-195.

20. Zidelmal Z, Amirou A, Adnane M, Belouchrani A. QRS detection based on wavelet coefficients. Comput Meth Prog Bio. 2012. Vol. 107. No 3. Pp. 490-496.



For citation: Dahwah M. S., Leukhin A. N. A Comparison of 5 Algorithms for R Peaks Detection in an ECG Signal. Vestnik of Volga State University of Technology. Ser.: Radio Engineering and Infocommunication Systems. 2018. No 3 (39). Pp. 39-49. DOI: 10.15350/2306-2819.2018.3.39


© 2006-2025 Поволжский государственный технологический университет, ФГБОУ ВО «ПГТУ».
При использовании текстовой информации, фото- и видеоматериалов ссылка на сайт обязательна.

Разработано компанией «Цитрус»

Нашли ошибку?
Выделите текст с ошибкой и
нажмите Ctrl+Enter



Здесь тоже можно
прокручивать колесиком мыши