74-81

UDC 681.586
DOI: 10.15350/2306-2819.2018.4.74 

DEVELOPMENT OF A MATHEMATICAL MODEL OF SYNTHESIZING
THIN FILMS OF ZINC OXIDE FOR GIVEN COMPLEX-VALUED RELATIVE
PERMITTIVITY

D. E. Shashin
Volga State University of Technology,
3, Lenin Square, Yoshkar-Ola, 424000, Russian Federation
E-mail: dima_shashin@rambler.ru

ABSTRACT

Introduction. At present there are no mathematical models, which could help to predict optical characteristics of thin films of zinc oxide (the index of refraction and the absorption coefficient within complex permeability) depending on technological modes of their production. Thus, the construction of the mathematical model, connecting technological parameters of production and optical characteristics of thin films of zinc oxide becomes an urgent problem. The purpose of the work is the construction of the mathematical model, connecting technological parameters of production with complex permeability of thin films of zinc oxide. The following problems were being solved: to obtain a set of samples of thin films of zinc oxide by a reactive magnetron sputtering method under different evaporation conditions; to determine dielectric penetrability of obtained films; to create a mathematical expression, connecting technological parameters of production with complex permeability of thin films of zinc oxide. Results. The implementation of the experiment design, which has a number of tests, allows calculating sample coefficients of the regression equation. The accuracy of these coefficients needs to be considered carefully. Magnitudes of variables in the equation Xi have values +1 and –1.. For finding models of the second order, which are more appropriate for describing film coating formation processes, the application of Box design Бn and Kono design Ко23 is justified. In these designs experiments are carried out according to a certain algorithm in points +1,–1 and in the point 0 (the centre of design). For performing physical experiments, rotatable central composite designs (Box-Wilson design) are recommended. These designs are supplemented by experiments in star points. The obtained regression equation looks like the following:

Y = 3,923 + 0,52X1 +0,03X12 +0,251X2

The given equation shows that the parameter X3 – tн (evaporation time) in the studied range doesn't invluence the dielectric penetrability of thin films of zinc oxide. The varaiation of values of other parameters X1 – Pраб (operating pressure) and X2 – Cкис (content of oxygen in the working mixture), in the given range, allows growing up thin films of zinc oxide with values of complex permeability ԑ from 3,2 to 4,8, that differs considerably from complex permeability of volume zinc oxide (8,5). Conclusion. The mathematical model of the type Y = 3,923 +0,52X1+0,03X12 +0,251X2, connecting technological parameters of magnetron sputtering with complex permeability of obtained films was developed. The adequacy of the obtained regression equation Y = 3,923 + 0,52X1 +0,03X12 +0,251X2 was checked using Fisher's test. The calculation showed that the obtained equation can be considered adequate with a probability of 95 % (Fрасч.=2,368<Fтабл.=2,7).

KEYWORDS

mathematical model; magnetron sputtering; thin films; zinc oxide; dielectric penetrability; regression equation

FULL TEXT (pdf)

REFERENCES

1. Ghorannevis Z., Hosseinnejad M.T. Effect of substrate temperature on structural, morphological and optical properties of deposited Al/ZnO. Theoretical Applied Physics. 2015. Vol. 21, No 8. P. 33-38.
2.   Weiqiang S., Yuehui H., Yichuan C. Investigation of the Properties of Al-doped ZnO Thin Films with Sputtering Pressure Deposition by RF Magnetron Sputtering. Advances in Computer Science Research (ACSR). 2017. Vol. 76. P. 1790-1792.
3. Zaitsev S.V., Vashchilin V.S. Vliyanie kontsentratsii kisloroda na mikrostrukturu, morfologiyu i opticheskie svoistva plenok oksida tsinka, formiruemykh metodom magnetronnogo raspyleniya [Influence of Oxygen Concentration on the Microstructure, Morphology and Optical Properties of Thin Films of Zinc Oxide, Formed by a Magnetron Sputtering Method]. Vestnik IrGTU [Bulletin of Irkutsk National Research Technical University]. 2017. Vol. 21, No 8. Pp. 167-175. (In Russ.).
4. Brus V.V., Kovalyuk Z.D. Opticheskie svoistva tonkikh plenok TiO2-MnO2, izgotovlennykh po metodu elektronno-luchevogo ispareniya [Optical Properties of Thin Films TiO2-MnO2, Produced According to an Electron-Beam Evaporation Method]. ZHurnal tekhnicheskoj fiziki [Journal of Applied Physics]. 2012. Vol. 82, Iss. 8. Pp. 110-113.  (In Russ.).
5.   Swanepoel R. Determination of the thickness and optical constants of amorphous silicon. Printed in Great Britain. 1983. No. 16. Pp. 1215-1222.
6.   Volpyan O.D., Obod Yu.A., Yakovlev P.P. Poluchenie opticheskikh plenok oksida tsinka magnetronnym raspyleniem na postoyannom i peremennom toke [Production of Optical Films of Zinc Oxide by Magnetron Sputtering at Direct and Alternating Currents]. Prikladnaya fizika [Applied Physics]. 2010. No 3. Pp. 24-30. (In Russ.).
7.   Guseinov F.G., Mamedyarov O.S. Planirovanie eksperimenta v zadachakh elektroenergetiki [Design of an Experiment in Electrical Power Engineering Problems]. Moscow: Energoatomizdat, 1988. 150 p. (In Russ.).
8.   Nalimov V.V., Chernova N.A. Statisticheskie metody planirovaniya ekstremal'nykh eksperimentov [Statistical Methods of Extreme Experiment Design]. Moscow: Nauka, 1965. 275 p. (In Russ.).
9.   Gaskarov D.V., Dahnovich A.A. Optimizatsiya tekhnologicheskikh protsessov v proizvodstve elektronnykh priborov [Optimization of Technological Processes in Production of Electronic Devices]. Moscow: Vysshaya shkola, 1986. 191 p. (In Russ.).
10. Gludkin O.P., Obichkin Yu.G., Blohin V.G. Statisticheskie metody v protsesse proizvodstva radioelektronnoy apparatury [Statistical Methods in the Radio Electronic Equipment Production Process]. Moscow: Energy, 1977. 296 p. (In Russ.).
11.  Barvinyuk V.A. Upravlenie napryazhennym sostoyaniem i svoistva plazmennykh pokrytiy [Stress State Control and Plasma Coating Properties]. Moscow: Mashinostroenie, 1990. 384 p. (In Russ.). 

For citation: Shashin D. E. Development of a Mathematical Model of Synthesizing thin Films of Zinc Oxide for Given Complex-Valued Relative Permittivity. Vestnik of Volga State University of Technology. Ser.: Radio Engineering and Infocommunication Systems. 2018. No 4 (40). Pp. 74-81. DOI: 10.15350/2306-2819.2018.4.74


© 2006-2025 Поволжский государственный технологический университет, ФГБОУ ВО «ПГТУ».
При использовании текстовой информации, фото- и видеоматериалов ссылка на сайт обязательна.

Разработано компанией «Цитрус»

Нашли ошибку?
Выделите текст с ошибкой и
нажмите Ctrl+Enter



Здесь тоже можно
прокручивать колесиком мыши