DEVELOPING MODELS AND ALGORITHMS FOR STUDYING THE EFFECTS OF NONLINEAR FREQUENCY DISPERSION IN TRANSIONOSPHERIC COMMUNICATION CHANNELS WITH DISPERSION DISTORTIONS
A. A. Kislitsin1, V. V. Ovchinnikov1, O. A. Trushkova1, 2 1Volga State University of Technology,
3, Lenin Square, Yoshkar-Ola, 424000, Russian Federation
E-mail: KislitsinAA@volgatech.net 2Branch of the Federal State Unitary Enterprise «Radio Frequency Centre
of the Central Federal District» (GRFC) for the Volga Federal District,
8A, Ryabinina str., Yoshkar-Ola, 424002, Russian Federation
ABSTRACT
Introduction. Earth’s ionosphere is a medium with frequency dispersion caused by the dependence of the phase velocity of the wave propagation on the frequency. The influence of the effect increases with the increase in the signal bandwidth. The negative impact of frequency dispersion is signal distortions due to the break in phase relations of signal components. Estimating dispersion distortions in a transionospheric radio channel can be performed by means of the following approaches: modeling and studying dispersion characteristic - in the frequency domain, and impulse response in the time domain. The aim of the research was to develop a model and an algorithm for studying the effects of nonlinear phase frequency dispersion on system characteristics of wideband transionospheric communication channels. To achieve the goals, we pinpointed the following tasks: analysis of the principles of communication over the transionospheric radio channel; derivation of expressions for estimating parameters of phase frequency dispersion; development of the model and algorithm to study dispersion characteristic, frequency response (FR) and impulse response (IR); testing the model and analysis of the experimental results. Research method. We used the common approach for describing propagation of wave packets when the propagation in a medium is modeled by an equivalent linear system and its associated frequency response, impulse response and dispersion characteristic. In this case applying the method of Taylor series expansion of signal phase around the mid-band (carrier) frequency is adequate. To obtain a rough estimates of dispersion distortions caused by the second-order dispersion, we used a method that involves studying channel coherent bandwidth. The behavior of distortions and their quantitative measures were estimated by studying the channel impulse response. Results. We experimentally found critical TEC values for a mid-latitude region both for quiet and disturbed ionosphere. These data were used to model dispersion characteristic, channel impulse response as well as to calculate the second- and the third-order dispersion parameters. We shall note that distortions in transionospheric communication radio channels are significant when . That limits the use of the optimum channel bandwidth. Moreover, considering the quadratic and cubic components in the phase causes the changes in the channel impulse response envelope.
KEYWORDS
transionospheric radio channel; phase frequency dispersion; frequency response; dispersion characteristic; impulse response; coherent bandwidth
FULL TEXT (pdf)
ACKNOWLEDGMENT
This work was supported by the grants №18-37-00079; №17-07-00799; № 18-07-01377 from the Russian Foundation for Basic Research.
REFERENCES
1. Borisov V.I., Zinchuk V.M., Limarev A.E. et al. Pomekhozashchishchennost' sistem radiosvyazi s rasshireniem spektra signalov modulyaciej nesushchej psevdosluchajnoj posledovatel'nost'yu [Noise and interference immunity of radio communication systems with signal spectrum spreading through the use of carrier modulation by a pseudo-random sequence].; edited by V.I. Borisov. Moscow: Radio i svyaz' , 2003.
640 p. (In Russ.).
2. Gantmaher V.E., Bistrov N.E., Chebotarev D.V. Shumopodobnye signaly. analiz, sintez, obrabotka [Noise-like signals. Analysis, synthesis, processing]. Saint Petersburg.: Nauka i Tekhnika, 2005. 400 p. (In Russ.).
3. Valery P. Ipatov. Spread Spectrum and CDMA. Principles and Applications John. Wiley & Sons Ltd, 2004. 398 p.
4. Brunelli B.E., Namgaladze A.A. Fizika ionosfery [Physics of the ionosphere]. Moscow: Kniga po Trebovaniyu, 2012. 527 p. (In Russ.).
5. Yakovlev O.I., Yakubov V.P., Uryadov V.P. et al. Rasprostranenie radiovoln [Radio wave propagation]. Moscow: Lenand, 2009. 496 p. (In Russ.).
6. Ivanov V.A., Ivanov D.V., Mikheeva N.N. Dispersionnye iskazheniya sistemnyh harakteristik shirokopolosnyh ionosfernyh radiokanalov: monografiya [Dispersion distortions of the system characteristics of broadband ionospheric radio channels: monograph] Yoshkar-Ola: Volga State University of Technology, 2015. Pp. 156. (In Russ.).
7. Ivanov D. V., Ivanov V. A., Ryabova M. I. et al. Iskazheniya shirokopolosnogo radiosignala v ionosfere, vyzvannye nelinejnoj chastotnoj dispersiej [Broadband signal distortion in the ionosphere, caused by nonlinear frequency dispersion]. Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Ser.: Radiotekhnicheskie i infokommunikatsionnye sistemy [Vestnik of Volga State University of Technology. Ser.: Radio Engineering and Infocommunication Systems]. 2013. № 2 (18). Pp. 5-15. (In Russ.).
8. Ivanov D.V., Ivanov V.A., Ryabova N.V. et al. Effekty chastotnoj dispersii gruppovogo zapazdyvaniya pri transionosfernom rasprostranenii radiovoln [Effects of frequency dispersion of group delay in the transionospheric propagation of radio waves]. Fizika volnovyh processov i radiotekhnicheskie sistemy [Physics of Wave Processes and Radio Systems]. 2017. Vol. 20, No 3. Pp. 31-36. (In Russ.).
9. Ivanov D. V., Ivanov V. A., Mikheeva N. N. et al. Propagation of broadband HF signals in a medium with nonlinear dispersion. Journal of Communications Technology and Electronics. 2015. Vol. 60, No. 11. Pp. 1205-1214.
10. Kiryanova K.S., Kryukovsky A.S. Osobennosti luchevogo rasprostraneniya radiovoln v ionosfere Zemli [Features of the ray propagation of radio waves in the Earth’s ionosphere]. T-Comm: Telecommunications and transport. 2011. Vol. 6, No 11. Pp. 25–28.
(In Russ.).
11. Ivanov D.V., Ivanov V.A., Ryabova N.V. et al. Opredelenie parametrov chastotnoj dispersii transionosfernogo radiokanala [Determination of frequency dispersion’s parameters of transionospheric radio channel]. Izvestiya vysshih uchebnyh zavedenij. Fizika [Russian Phisics Journal, Procceding of Higher Educational Institutions. Phisics]. 2016. Vol. 59, No. 12-2. Pp. 105-108. (In Russ.).
12. Danilkin N.P. Transionosfernoe radiozondirovanie (Obzor) [Transionospheric Radio Sounding (Review)]. Geomagnetizm i aehronomiya [Geomagnetism and Aeronomy]. 2017. Vol. 57, No. 5. Pp. 543-554. (In Russ.).
13. Ivanov D., Ivanov V., Ryabova N., et al. Dispersive Distortions of System Characteristics of Broadband Transionospheric Radio Channels. Journal of Applied Engineering Science. 2017. Vol. 15, No 4. P. 550-555 doi:10.5937/jaes15-11784
14. Ivanov D. V., Ivanov V. A., Ryabova N. V. et al. The plotting algorithm of coherence band maps of transionospheric radio channels. Proc. SPIE 10466, 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. 2017. Vol 10466. 104667F. doi: 10.1117/12.2285658
15. Ivanov D. V., Ivanov V. A., Ryabova N. V. et al. Metod opredeleniya polosy kogerentnosti i eyo kartografirovanie v transionosfernom radiokanale [Method for determining the coherent bandwidth and its plotting in the transionospheric radio channel]. XI Vserossijskaya konferenciya «Radiolokaciya i radiosvyaz'». Sbornik trudov. [XI Russian Conference on “Radiolocation and Radio Communication”. Proceedings]. Moscow: IRE them. V.A. Kotelnikov RAS, 2017. Pp. 178-182. (In Russ.).
16. Ivanov D. V., Ivanov V. A., Ryabova N. V. et al. Determining method of electronic concentration total profile using oblique and transionospheric sounding data. Proc. SPIE 10466, 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. 2017. Vol. 10466. 104667E. doi: 10.1117/12.2285639
17. Kislitsin A. A. Algoritmy opredeleniya vremennyh variacij polnogo ehlektronnogo soderzhaniya verhnej atmosfery Zemli [Algorithms of determination of time variations of total electron content in the upper atmosphere of the Earth]. Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Ser.: Radiotekhnicheskie i infokommunikatsionnye sistemy [Vestnik of Volga State University of Technology. Ser.: Radio Engineering and Infocommunication Systems]. 2015. № 2 (26). Pp. 27-40. (In Russ.).
18. Yasyukevich Yu. V., Mylnikova A. A., Demyanov V. V. et al. Sutochnaya dinamika vertikal'nogo polnogo elektronnogo soderzhaniya nad gorodami Irkutsk i Yoshkar-Ola po dannym GPS/GLONASS i modeli IRI-2012 [Diurnal Dynamics of the Vertical Total Electron Content over the Cities Yoshkar-Ola and Irkutsk According to the Data of GPS/GLONASS and the Model IRI-2012]. Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Ser.: Radiotekhnicheskie i infokommunikatsionnye sistemy [Vestnik of Volga State University of Technology. Ser.: Radio Engineering and Infocommunication Systems]. 2013. № 3 (19). Pp. 18-29. (In Russ.).
19. UWB. Theory and Applications / Ed. by Oppermann I., Hamalainen M. and Iinatti J. Chichester: Wiley, 2004. 223 p.
20. Ivanov D.V. Methods and mathematical models of the study of the propagation of spread spectrum HF signals in the ionosphere and the correction for dispersion distortion. [Metody i matematicheskie modeli issledovaniya rasprostraneniya v ionosfere slozhnyh dekametrovyh signalov i korrekcii ih dispersionnyh iskazhenij]. Yoshkar-Ola: MarSTU, 2006. pp. 266.
(In Russ.).
For citation: Kislitsin A. A., Ovchinnikov V. V., Trushkova O. A. Developing Models and Algorithms for Studying the Effects of Nonlinear Frequency Dispersion in Transionospheric Communication Channels with Dispersion Distortions. Vestnik of Volga State University of Technology. Ser.: Radio Engineering and Infocommunication Systems. 2018. No 3 (39). Pp. 6-19. DOI: 10.15350/2306-2819.2018.3.6
Отдел научных программ, интеллектуальной собственности и НИРС
(8362) 68-60-13, аудитория 404 (I) – НИРС, гранты
(8362) 68-60-09, 68-60-62 аудитория 423(I) – ОИС, публикации