58-66

UDC 621.396
DOI: 10.15350/2306-2819.2018.3.58

COMPARATIVE ANALYSIS OF HARMONIC FUNCTION APPROXIMATION METHODS

V. V. Chekushkin1, S. N. Zhiganov1, А. A. Bykov1, К. V. Mikheev2
1Murom Institute (Branch) of «Vladimir State University named after Alexandr Grigorievich and Nikolay Grigorievich Stoletovs»,
23, Orlovskaya Street, Murom, 602254, Russian Federation
2JSC «Murom Plant of Radio-Measuring Instruments»,
2, Karachaevskoe shosse, Murom, 602267, Russian Federation
E-mail: s_zh_72@mail.ru

ABSTRACT

Introduction. Harmonic signals are widely used in radio engineering systems of information measurement and processing. Measuring instruments are calibrated using these signals and they are the basis for designing frequency synthesizers, which form high-stable radio signals of generators and receiving devices. Recently, with the development of digital methods, harmonic signals are formed algorithmically. The accuracy of measuring instruments and system performance characteristics depend on the quality of their formation. When creating the similar systems, judging by the sine function formation error, speed and computational complexity of algorithms, rational approaches to the choice of sine function approximation methods must be used. The purpose of the article is to conduct the comparative analysis of functional dependence approximation methods, based on the use of continuous piecewise-linear functions and on polynomial representation. As an example, the trigonometric function sin(x) on the interval of values x Î [0, 2p] was considered. The approximation problem can be solved using different methods. The method of continuous piecewise-linear functions, where the function is replaced by line segments on the finite interval of values, is the simplest one. The method, based on the polynomial representation of the approximated function, is also widely used when representing functional dependences. Results. By the example of the trigonometric function sin(x), defined on the interval of values x Î [0, p], two methods of the approximation are compared in the work: piecewise-linear and the one using polynomials of best approximation from the second and fourth degrees. It is shown that the use of polynomial approximation allows improving the fidelity of function reproduction and the increase in the polynomial degree considerably decreases minimum approximation errors but the number of operations, necessary for function reproduction increases. Conclusion. The recommendations for further improvement of harmonic function representation accuracy due to halving the approximation interval and using polynomials of best approximation of odd degrees are given. Polynomials of best approximation of odd degrees with calculated coefficients and corresponding and the corresponding number of necessary operations and maximum approximation errors are presented. In accordance with the strategy of the maximum identity of graphs of reproduced functional dependences, the method of the sinusoid half-time approximation by an «inverted» parabola, has the largest relation of the number of significant figures to the number of required operations of function reproduction at a given error 0,03. The most efficient method of the approximation is the expansion in odd powers in the generally accepted interval of function values x Î [0, p/2] with further use of an argument reduction formula, providing the sequential minimum increment of the complexity of the computational algorithm by 1, 2 operations when the calculation error decreases in the range [0,5; 3,5×10-9].

KEYWORDS

harmonic signal; piecewise-linear approximation; polynomials of best approximation

FULL TEXT (pdf)

ACKNOWLEDGMENT

The work was carried out with the financial grant support from RFBR №18-37-00077.

REFERENCES

1. Kurilov I.A., Averianov A.M., Paveliev D.V. Postroenie traektorii dvizheniya vozdushnykh ob"ektov na osnove nepreryvnykh kusochno-lineinykh funktsiy [Tracing of Airborne Vehicles Based on Continuous Piecewise-Linear Functions]. Voprosy radioelektroniki. Ser. Radiolokatsionnaya tekhnika [Problems of Radio Electronics. Ser. Radar Technology]. 2011. Iss. 1. Pp. 210–217. (In Russ.).
2. Bahvalov N.S., Zhidkov N.P., Kobel'kov G.M. Chislennye metody [Numerical Methods]. Moscow: Laboratoriya Bazovyh Znanij, 2000. 624 p. (In Russ.).
3. Chekushkin V.V., Mikheev K.V., Zhiganov S.N. et al. Matematicheskoe modelirovanie i vychislitel'nye algoritmy v radiotekhnicheskikh sistemakh [Mathematical Modeling and Computational Algorithms in Radio Engineering Systems]. Vestnik Koncerna VKO «Almaz – Antej» [Bulletin of the Concern VKO «Almaz-Antey»]. 2017. No 1. Pp. 98-104. (In Russ.).
4. Zhiganov S.N., Smirnov M.S., Romanov D.N. Signal measurement system of intermediate frequency radar receiver. 2015 International Siberian Conference on Control and Communications (SIBCON). Omsk: Omsk State Technical University. Russia, Omsk, May 21-23, 2015. IEEE Catalog Number: CFP15794-CDR.
5. Kahaner D., Moler C., Nash S. Chislennye metody i programmnoe obespechenie [Numerical Methods and Software]: translation from English. Moscow: Mir, 2001. 575 p.
6. Zhiganov S.N., Smirnov M.S., Romanov D.N. Issledovanie kharakteristik tsifrovogo priemnika radiolokatsionnykh signalov na mikroskheme 1288 HK1T [Investigation of Characteristics of the Digital Receiver of Radar Signals on the Microcircuit 1288 HK1T]. 17-ya Mezhdunarodnaya konferentsiya «Tsifrovaya obrabotka signalov i ee primenenie», 25-27 marta, 2015 g. [The 17th International Conference «Digital Signal Processing and its Application», March 25-27, 2015], Moscow: V.A. Trapeznikov Institute of Control Sciences of the Russian Academy of Sciences. Pp. 377-380. (In Russ.).
7. Sapel'nikov V.M., Hakimov R.A., Kolovertnov G.Yu. Tsifroanalogovye preobrazovateli dlya vosproizvedeniya trigonometricheskikh funktsiy [Digital-to-Analog Converters for Trigonometric Function Reproduction]. Izmeritel'naya tekhnika [Measuring technology]. 2001. No 3. Pp.17-19. (In Russ.).
8. Chekushkin V.V., Mikheev K.V., Panteleev I.V. Improving Polynomial Methods of Reconstruction of Functional Dependences in Information-Measuring Systems. Measurement Techniques. July 2015. Vol. 58. Iss. 4. Pp 385-392.
9. Chekushkin V.V., Yurin O.V., Bulkin V.V. Realizatsiya vychislitel'nykh protsessov v informatsionno-izmeritel'nykh sistemakh: monografiya [Implementation of Computational Processes in Information-Measuring Systems: Monograph]. Murom: Publishing centre of Murom Institute (Branch) of «Vladimir State University», 2005. 158 p. (In Russ.).
10. Ashrafi A., Adhami R., Milenkovic A. A direct digital frequency synthesizer based on the Quasilinear interpolation method. IEEE Trans. Circuit Syst. I, Reg. Papers. Apr. 2010. Vol. 57. No.4. Pp. 863–872.
11. Caro D., Petra N., Strollo A. Direct digital frequency synthesizer using nonuniform piecewiselinear approximation. IEEE Trans. Circuit Syst. I, Reg. Papers, Oct. 2011. Vol. 58. No. 10. Pp. 2409– 2419.
12. Danilin S.N., Shchanikov S.A. Neural network algorithms for determining the values of signal parameters in radio-electronic hardware. Dynamics of Systems, Mechanisms and Machines (Dynamics). 2017. Pp. 1-4. (DOI: 10.1109/Dynamics.2017.8239445).  

For citation: Chekushkin V. V., Zhiganov S. N., Bykov А. A., Mikheev К. V. Comparative Analysis of Harmonic Function Approximation Methods. Vestnik of Volga State University of Technology. Ser.: Radio Engineering and Infocommunication Systems. 2018. No 3 (39). Pp. 58-66. DOI: 10.15350/2306-2819.2018.3.58


© 2006-2025 Поволжский государственный технологический университет, ФГБОУ ВО «ПГТУ».
При использовании текстовой информации, фото- и видеоматериалов ссылка на сайт обязательна.

Разработано компанией «Цитрус»

Нашли ошибку?
Выделите текст с ошибкой и
нажмите Ctrl+Enter



Здесь тоже можно
прокручивать колесиком мыши