50-57

UDC 612.171.1
DOI: 10.15350/2306-2819.2018.3.50

A NEW APPROACH, BASED ON THE WAVELET TRANSFORM
FOR R PEAKS DETECTION IN AN ECG SIGNAL

M. S. Dahwah, A. N. Leukhin
Mari State University,
1, Lenin Square, Yoshkar-Ola, 424000, Russian Federation
E-mail: eng_dahwah@yahoo.com; Leukhinan@list.ru

ABSTRACT

Introduction. In electrocardiography, various methods of processing digital signals are used to detect, extract and analyze different components of an electrocardiogram (ECG). Among them, the wavelet transform technique provides promising results in the analysis of the time-frequency characteristics of electrocardiogram components. The automatic detection of ECG components has been widely studied. The R peak is the most characteristic peak of the ECG signal with the maximum amplitude in comparison with other waves. The detection of other peaks is usually conducted after determining the location of the R peak and by defining search intervals in the neighborhood of the R peak. The purpose of this paper is to improve the method of ECG signal components detection based on the wavelet transform. The tasks of the study are the following: to give a brief survey of algorithms of electrocardiogram processing and peaks detection; to compare the existing algorithms for detecting R peaks, based on the wavelet transform. A new algorithm for the detection of R peaks, based on the wavelet transform has been thoroughly considered. The results of the efficiency assessment of the developed method of R peak detection are presented. Results. In the experimental sections of this paper, the proposed algorithms are evaluated using ECG signals from MIT-BIH database. The R peak detector obtained sensitivity TPR=99.9% and precision PPV=99.3 %.

KEYWORDS

electrocardiogram; QRS complex; wavelet transform; adaptive threshold; R peak

FULL TEXT (pdf)

REFERENCES

1. Mikhled Alfaouri and Khaled Daqrouq. ECG Signal Denoising By Wavelet Transform Thresholding. American Journal of Applied Sciences. 2008. Vol. 5. No 3. Pp. 276-281.
2. Biswas, Anamitra Bardhan Roy, Nilanjan Dey. Wavelet Based QRS Complex Detection of ECG Signal. International Journal of Engineering Research and Applications. 2012. Vol. 2. No 3. Pp. 2361-2365.
3. Donoho D. L. De-noising by soft thresholding. IEEE Transaction on Information Theory. 1995. Vol. 41. Pp. 613–627.
4. Addison P. S. The illustrated wavelet transform handbook: introductory theory and applications in science, engineering, medicine and finance. 2010. CRC Press, Philadelphia.
5. Martínez J. P., Almeida R., Olmos S., Rocha A. P., & Laguna P. A wavelet-based ECG delineator: evaluation on standard databases. Biomedical Engineering, IEEE Transactions on. 2004. Vol. 51. No 4. Pp. 570-581.
6. Bahoura M., Hassani M., and Hubin M. DSP implementation of wavelet transform for real time ECG wave forms detection and heart rate analysis. Comput. Methods Programs Biomed. 1997. Vol. 52. Pp. 35-44.
7. Francalancia C. La Trasformata Wavelet per il n'conoscimento di coniiguurazioni in segnali del sistema cardiovascolare. Degree Thesis in Electronic Engineering. University of Rome "La Sapienza". 1995. Lazio.
8. V. Di-Virgilio, C. Francaiancia, S. Lino, and S. Cerutti. ECG fiducial points detection through wavelet transform. IEEE Eng. Med. Biol. 17th Ann. Conf. 21st Canadian Med. Biol. Eng. Conf. 1997. Montreal. Pp. 1051-1052.
9. Kadambe S., Murray R. and Boudreaux-Bartels G.F. Wavelet transform-based QRS complex detector. IEEE Trans. Biomed. Eng. 1999. Vol. 46. Pp. 838-848.
10. Li C., Zheng C., and Tai C. Detection of ECG characteristic points using wavelet transforms. IEEE Trans. Biomed. Eng. 1995. Vol. 42. Pp. 21-28.
11. Thakor N. V., Webster J. G., and Tompkins W. J. Estimation of QRS complex power spectrum for design of a QRS filter. IEEE Trans. Biomed. Eng. 1984. Vol. 31. Pp. 702–706.
12. Li C., Zheng C., and Tai C. Detection of ECG characteristic points using wavelet transforms. IEEE Trans. Biomed. Eng. 1995. Vol. 42. Pp. 21–28.

For citation: Dahwah M. S., Leukhin A. N. A New Approach, Based on the Wavelet Transform for R Peaks Detection in an ECG Signal. Vestnik of Volga State University of Technology. Ser.: Radio Engineering and Infocommunication Systems. 2018. No 3 (39). Pp. 50-57. DOI: 10.15350/2306-2819.2018.3.50

© 2006-2025 Поволжский государственный технологический университет, ФГБОУ ВО «ПГТУ».
При использовании текстовой информации, фото- и видеоматериалов ссылка на сайт обязательна.

Разработано компанией «Цитрус»

Нашли ошибку?
Выделите текст с ошибкой и
нажмите Ctrl+Enter



Здесь тоже можно
прокручивать колесиком мыши