AMPLITUDE-FREQUENCY EEG MAPPING FOR CLINICIST SUPPORT
IN VISUAL EEG ANALYSIS
Ya. A. Furman1, V. V. Sevastyanov1,2, I. D. Stulin3, K. O. Ivanov1 1Volga State University of Technology,
3, Lenin Square, Yoshkar-Ola, 424000, Russian Federation
E-mail: krtmbs@volgatech.net 2Center for Speech Pathology and Neurorehabilitation of Neurosensor and Motor Disturbances,
65, Proletarskaya St., Yoshkar-Ola, 424031, Russian Federation
E-mail: cpr@mari-el.ru 3A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Health of the Russian Federation,
20, bldg 1, Delegatskaya Street, Moscow, 127473, Russian Federation
E-mail: stu-clinic@mail.ru
ABSTRACT
Introduction. Clinical neurophysiology has developed two approaches to solving diagnostic problems based on the results of EEG analysis. The first approach is based on a visual analysis, performed by an experienced clinician, and the second approach uses digital signal processing for the automatic EEG analysis on computers. When individual diagnostics is carried out, abilities of a man to solve such poorly formalized tasks as detection, recognition and the analysis of scenes under conditions of interference and nonstationarity of signals significantly exceed the capabilities of the EEG. From this point of view, the visual EEG methods remain in demand, but in order to increase their efficiency, they require preliminary digital processing that reduces the volume of routine operations with the analyzed EEG. The purpose of the article is to develop algorithms for the local EEG analysis that allow presenting data of EEG examinations in a familiar and understandable form, assisting in reaching a clinical conclusion. For this purpose, the following problems are solved in the work: 1) a review of the EEG analysis methods; 2) a review of the contour model of the EEG signal, developed by the authors that allows its decomposition and determination of informative parameters of the forms of EEG constituent elements; 3) a review of the EEG segmentation algorithm, which allows representing the signal in the form of an ordered sequence of waves, bounded by global-local minimum points; 4) substantiation of the structural approach for the analysis of EEG signals; 5) development of an algorithm for computing the frequency characteristics of an isolated segment of the EEG, represented by the contour model. Results. A structural approach to the analysis of the EEG curve, consisting in the fact that the recognizable image - an electroencephalogram is constructed by connecting simple subpatterns, called non-derivative elements, is proposed. Algorithms and mathematical models for estimating informative parameters of non-derivative EEG elements are developed. To support the clinician in the visual analysis of the EEG, an algorithm for estimating the frequency parameters of isolated EEG segments, presented in a contour form, has been developed. The practical value of the work lies in the fact that the mathematical apparatus, considered in the article allows performing a significant part of the "speculative" operations on the computer and presenting them as amplitude and frequency maps, containing the results of measurements of the analyzed oscillation. The proposed approach significantly reduces the amount of "speculative" operations, performed by the clinician and provides an opportunity to perform the intellectual part of the EEG analysis more objectively, qualitatively and quickly.
KEYWORDS
computer-based electroencephalography; central nervous system; elementary vector; elementary contour; electroencephalogram
FULL TEXT (pdf)
ACKNOWLEDGMENT
The work was carried out with financial support from the Ministry of Education and Science of the Russian Federation, project RFMEFI577170254 «A system of intraoperative navigation with the support of the augmented reality technology, based on virtual 3D models of organs, obtained using CT diagnostics, for minimally invasive operations».
REFERENCES
1. Gnezditsky V. V. Obratnaya zadacha EEG i klinicheskaya elektroentsefalografiya [Inverse Problem of EEG and Clinical Electroencephalography]. Moscow: MEDpress-inform. 2004. 624 p. (In Russ.).
2. Stulin I. D., Hubutiya A. Sh., Sinkin N.A. et al. Analiz instruktsii po diagnostike smerti mozga [Brain Death Diagnostics Instruction Analysis]. Zhurnal nevrologii i psihiatrii im. S.S.Korsakova [Journal of neurology and psychiatry named after S.S. Korsakov]. 2010. No 12. Pp. 82-90. (In Russ.).
3. Stulin I.D., Hubutiya A.Sh., Gotie S.V. et al. Diagnostika smerti mozga: sovremennoe sostoyanie problem [Brain Death Diagnostics: Modern Problem Condition]. Zhurnal nevrologii i psihiatrii im. S.S.Korsakova [Journal of neurology and psychiatry named after S.S. Korsakov]. 2012. No 3. Pp. 4-12. (In Russ.).
4. Zhirmunskaya E. A. Klinicheskaya elektroentsefalografiya [Clinical Electroencephalography]. Moscow: Maybe, 1991. 78 p. (In Russ.).
5. Zhadin, M. N. Biofizicheskie mekhanizmy formirovaniya elektroentsefalogrammy [Biophysical Mechanisms of Electroencephalogram Forming]. Moscow: Nauka, 1984. 196 p. (In Russ.).
6. Kropotov Yu.D. Kolichestvennaya EEG, kognitivnye vyzvannye potentsialy mozga cheloveka i neiroterapiya. [Quantitative EEG, Cognitive Evoked Human Brain Potentials and Neurotherapy]. Donetsk: Editor Zaslavsky A.Yu., 2010. 512 p. (In Russ.).
7. Zenkov L.R. Klinicheskaya elektroentsefalografiya [Clinical Electroencephalography]. Moscow: MEDpress-inform, 2013. 356 p. (In Russ.).
8. Berger H. Uber das Elektrenkephalogramm des Menschen. Psychiatr. 1929. Vol. 87. Pp. 527-570.
9. Gibbs F.A., Gibbs E. L. Atlas of electroencephalography. Vol.1: Methodology and controls. - 2nd Ed. / F. A. Gibbs, New-York: Addison-Wesley Publishing Company, 1951. 324 p. ISBN 0-201-02360-1.
10. Tsygan, V. N., Bogoslovsky M.M., Mirolyubov A.V. Elektroentsefalografiya [Electroencephalography] / edited by M. M. Dyakonov. StPb.: Nauka, 2008. 192 p. (In Russ.).
11. Rangayyan R. M. Analiz biomeditsinskikh signalov. Prakticheskiy podkhod [Biomedical Signal Analysis. Practical Approach] / Translation from English A.P. Nemirko. Moscow: FIZMATLIT, 2010. 440 p. (In Russ.).
12. Maiorov O. Yu. Komp'yuternaya EEG – proshloe, nastoyashchee, budushchee [Computer-based EEG: the Past, the Present, the Future]. Klinicheskaya informatika i telemedicina [Clinical Informatics and Telemedicine]. 2004. No 2. Pp. 167-171. (In Russ.).
13. Egorova N. S. Elektroentsefalografiya [Electroencephalography]. Moscow: Medicine, 1973. 296 p. (In Russ.).
14. Dokukina T.V., Misyuk N.N., Minzer M.F. et al. Sovmestimost' program komp'yuternoy obrabotki EEG v razlichnykh diagnosticheskikh sistemakh [Compatibility of EEG Computer Processing Programs in Different Diagnostic Systems]. Nevrologiya i nejrohirurgiya v Belarusi [Neurology and neurosurgery in Belarus]. 2011. No 1. Pp. 27-34. (In Russ.).
15. Rusinov, V. S., Grindel O.M., Boldyreva G.N. et al. Biopotentsialy mozga cheloveka. Matematicheskiy analiz [Human Brain Potentials. Mathematical Analysis]. Moscow: Medicine, 1987. 253 p. (In Russ.).
16. Odinak M. M., Andreeva G. O., Bazilevich S. N. et al. Nervnye bolezni [Diseases of a Nervous System]. Edited by Odinak M. M. StPb.: SpecLit, 2014. 256 p. (In Russ.).
17. Kulaichev, A. P. Komp’yuternaya elektrofiziologiya [Computer Electrophysiology]. Moscow: Publishing house of Moscow University, 2002. 640 p. (In Russ.).
18. (Fu, K. S. Syntactic methods in pattern recognition / K. S. Fu – New York and London: Academic Press, 1974. – 320 P.).
19. Furman Ya. A., Sevastyanov V. V., Ivanov K.O. et al. Konturnaya matematicheskaya model' elektroentsefalogrammy [Contour Mathematical Model of an Electroencephalogram]. Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Ser.: Radiotekhnicheskie i infokommunikatsionnye sistemy [Vestnik of Volga State University of Technology. Ser. Radio Engineering and Infocommunication Systems]. 2015. No 4 (28). Pp. 50-61. (In Russ.).
20. Furman Ya. A., Sevastyanov V. V., Ivanov K. O. et al. Segmentatsiya tonkoy struktury elektroentsefalogrammy [Segmentation of the Fine Structure of an Electroencephalogram]. Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta [Bulletin of Ryazan State Radio Engineering University]. 2015. No 54. Part 2. Pp. 56-67. (In Russ.).
21. Furman Ya. A., Sevastyanov V. V., Ivanov K. O. Contour Analysis of the Fine Structure in an Electroencephalogram. Pattern Recognition and Image Analysis. 2016. No. 4, Vol. 26. P. 758-772.
22. Furman Ya. A., Egoshina I. L., Ivanov K. O. Analiz i klassifikatsiya elementov EEG na baze ee konturnoy modeli [Analysis and Classification of EEG Elements Based on its Contour Model]. Trudy Respublikanskogo nauchnogo seminara «Metody modelirovaniya» [Proceedings of the Republican Scientific Seminar «Modeling Methods»]. Kazan: SCIENCE, 2016. Pp. 52-93. (In Russ.).
23. Efimov, N. V. Lineinaya algebra i mnogomernaya geometriya [Linear Algebra and Multidimensional Geometry]. Moscow: Glavnaya redakciya fiziko-matematicheskoj literatury «Nauka», 1974. 544 p. (In Russ.).
24. Furman Ya.A., Krevetsky A.V., Peredreev A.K. et al. Vvedenie v konturnyy analiz i ego prilozheniya k obrabotke izobrazheniy i signalov [Introduction to Contour Analysis and its Applications to Image and Signal Processing]. Moscow: Fizmatlit, 2002. 592 p. (In Russ.).
25. Furman Ya. A., Sevastyanov V. V., Ivanov K. O. Formirovanie informativnykh priznakov dlya avtomaticheskoy klassifikatsii elektroentsefalogramm [Formation of Informative Features for Automatic EEG Classification]. Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Ser.: Radiotekhnicheskie i infokommunikatsionnye sistemy. [Vestnik of Volga State University of Technology. Ser. Radio Engineering and Infocommunication Systems]. 2017. No 1 (33). Pp. 38-50. DOI 10.15350/2306-2819.2017.1.38 (In Russ.).
26. Furman Ya. A., Sevastyanov V. V., Ivanov K. O. Lokal'nyy analiz elektroentsefalogramm po ikh konturnym modelyam [Local Analysis of Electroencephalograms According to their Contour Models]. Radiofizicheskie metody v distantsionnom zondirovanii sred: materialy VII Vserossiyskoy nauchnoy konferentsii [Proceedings of VII All-Russian Scientific Conference «Radiophysical Techniques in Remote Sensing of Mediums»]. Murom: Publishing house of Murom Institute of Vladimir State University, 2016. Pp. 377-383. (In Russ.)
For citation: Furman Ya. A., Sevastyanov V. V., Stulin I. D., Ivanov K. O. Amplitude-Frequency EEG Mapping for Clinicist Support in Visual EEG Analysis. Vestnik of Volga State University of Technology. Ser.: Radio Engineering and Infocommunication Systems. 2018. No 3 (39). Pp. 20-38. DOI: 10.15350/2306-2819.2018.3.20
Отдел научных программ, интеллектуальной собственности и НИРС
(8362) 68-60-13, аудитория 404 (I) – НИРС, гранты
(8362) 68-60-09, 68-60-62 аудитория 423(I) – ОИС, публикации