6-32

UDC 621.371.25; 550.388.2
DOI: 10.15350/2306-2819.2018.2.6

HF COMMUNICATION QUALITY LEVEL INCREASE WHEN USING
THE PRE-SESSION DIAGNOSTICS OF A MULTIDIMENSIONAL IONOSPHERIC
RADIO CHANNEL

D. V. Ivanov, V. A. Ivanov, N. V. Ryabova, R. R. Belgibaev
Volga State University of Technology,
3, Lenin Square, Yoshkar-Ola, 424000, Russian Federation
E-mail: IvanovDV@volgatech.net

ABSTRACT

Introduction. Systems of short-distance and long-distance HF communication operate in one of the most complex radio channels – an ionospheric channel because of medium changeability and fluctuating multipath propagation. It is generally assumed that for that reason this communication is not reliable enough and the information rate is rather low. Therefore at present it is considered to be optional and the satellite communication is dominant in the country. However, eventually, there’s a reassessment of long-distance HF communication. Therefore at present in industrialized countries there’s a considerable interest in HF communication system improvement by studying multidimensional ionospheric radio channel characteristics and their relation to HF modems parameters. The approaches to the creation of cognitive HF communication, which requires the improvement of multidimensional channel diagnostics systems, are developed. However, the less known changeable channel characteristics are, the more communication system link margin, connected with power increase and transmission rate decrease, must be created for providing the required quality. One of the reasons for this state of affairs is that information about recent advances in multidimensional HF radio channel modeling and diagnostics is scattered. There is not enough information about innovations in the sphere of diagnostics systems and the efficiency of their use for increasing HFcommunication system quality levels. The purpose of the work is the analysis and the summary of the results of modern research on the problem of ionospheric channel diagnostics and HF communication quality level increase. Conclusion. The conducted analysis showed that the use of the current diagnostics of a multidimensional channel allows increasing HF communication quality levels on midlatitude and subpolar paths considerably: reducing the radiated power of a communication signal by 4, 3…12 dB on the midlatitude radio path and by 4, 8…6, 4 dB on the subpolar path at the steady speed or doubling the transmission rate at the constant power. It requires the development of methods and means of the sounding of a number of possible partial radio channels on the basis of power-consuming (due to increased duration) complex signals. The technology of software-defined (configurable) radio is promising for solving this problem due to the possibility of the greater use of optimal signal processing methods. It allows (with minimum radiation power under conditions of fluctuating noise and concentrated interference) obtaining experimental data on channel parameters, suitable for quality problem solution.

KEYWORDS

ionospheric radio channel; short radio waves; short-band digital communication modems; ionosondes; channel probes; partial communication channel availability

FULL TEXT (pdf)

ACKNOWLEDGMENT

The work was carried out with the grant support from the Ministry of Education and Science of the Russian Federation: № 8.2817.2017/ПЧ and the grant support from the Russian Foundation for Basic Research project: № 16-07-00210, 17-07-00799, 18-07-0137.

REFERENCES

1. Bryunelli B. E., Namgaladze A. A. Fizika ionosfery [Ionospheric Physics]. Moscow: Nauka, 1988. 528 p. (In Russ.).
2. Davies K. Radiovolny v ionosfere: Per. s angl. [Radio Waves in the Ionosphere: Translation from English]. Moscow: Mir, 1973. 502 p. (In Russ.).
3. Ivanov V.A., Ivanov D.V., Ryabova N.V. et al. Opredelenie osnovnykh parametrov mnogomernogo korotkovolnovogo radiokanala s ispol’zovaniem panoramnogo ionozonda [Determination of Basic Parameters of the Multidimensional Short-Wave Radio Channel Using Panoramic Ionosonde]. Vestnik Mariyskogo gosudarstvennogo tekhnicheskogo universiteta. Ser.: Radiotekhnicheskie i infokommunikatsionnye sistemy [Vestnik of Mari State Technical University. Ser.: Radio Engineering and Infocommunication Systems]. 2011. No 2 (12). Pp. 15-23. (In Russ.).
4. Ivanov V. A., Ivanov D. V., Ryabova N. V. et al. Issledovanie mnogomernogo korotkovolnovogo radiokanala s ispol'zovaniem panoramnogo ionozonda [The Research on a Multidimensional Short-Band Radio Channel Using a Panoramic Ionosonde]. II Vserossiyskie Armandovskie chteniya [II All-Russian Armand Readings]. Murom: Izd.-poligraficheskiy tsentr MI VlGU, 2012. Pp. 120-124. (In Russ.).
5. Gherm V. E., Zernov N. N., Strangeways H. J. et al. Scattering Functions for Wideband HF Channels. IEEE 8th International Conference on HF Radio Systems & Techniques. UK: Guildford, 2000. Pp. 341-345.
6. Ivanov V.A., Katkov E.V., Ryabova M.I., Chernov A.A. Kanal’nye parametry rasseyaniya dlya sredneshirotnoy ionosfery [Chanel Dispersion Parameters for the Middle-latitude Ionosphere]. Vestnik Mariyskogo gosudarstvennogo tekhnicheskogo universiteta. Ser.: Radiotekhnicheskie i infokommunikatsionnye sistemy [Vestnik of Mari State Technical University. Ser.: Radio Engineering and Infocommu-nication Systems]. 2011. No 3 (13). Pp. 93-101. (In Russ.).
7. Ivanov V. A., Katkov E. V., Chernov A. A. Ustroistvo i algoritmy sinkhronizatsii radiotekhnicheskikh system svyazi i zondirovaniya ionosfernykh vysokochastotnykh radiokanalov [The Construction and Synchronization Algorithms of Radio Engineering Communication Systems and Ionospheric High-Frequency Radio Channel Sounding]. Vestnik Mariyskogo gosudarstvennogo tekhnicheskogo universiteta. Ser.: Radiotekhnicheskie i infokommu­nikatsionnye sistemy [Vestnik of Mari State Technical University. Ser.: Radio Engineering and Info­communication Systems. 2010. No 2 (9). Pp. 114-126. (In Russ.).
8. Ivanov V. A., Chernov A.A. Razvitie teorii sinkhronizatsii RTS dekametrovoy svyzi i panoramnogo zondirovaniya ionosfery [The Development of Synchronization Theory of Radio Engineering Systems of Decameter Communication and Panoramic Ionospheric Sounding]. Telekommunikatsii [Telecommunications]. 2012. No 2. Pp. 16-22. (In Russ.).
9. Otnes R., Enokson L. Prikladnoy analiz vremennykh ryadov [The Applied Analysis of Time Series]. Moscow: Mir, 1982. 428 p. (In Russ.).
10. Bello P. A., Nelin B. D. The influence of fading spectrum on the binary error probabilities of inco-herent and differentially coherent matched filter re-ceivers. IRE Transactions on Communications Sys-tems. 1962. Vol. CS-10, No. 2. Pp. 160-168.
11. Proakis J. Tsifrovaya svyaz'. Per. s angl. [Digital Communication. Translation from English]. Moscow: Radio i svyaz', 2000. 800 p.
12. Stein S., Jones J. Printsipy sovremennoy teorii svyazi i ikh primenenie k peredache diskretnykh soobshcheniy [Modern Communication Theory Principles and their Application to Discrete Message Transmission]. Moscow: Svyaz', 1971. 374 p. (In Russ.).
13. Barabashev B. G., Vertogradov G. G. Dinamicheskaya adaptivnaya strukturno - fizicheskaya model' ionosfernogo radiokanala [A Dynamic Adaptive Structural and Physical Model of an Ionospheric Radio Channel]. Matematicheskoe modelirovanie [Mathematical modeling]. 1996. Vol. 8, No 2. Pp. 3-18 (In Russ.).
14. Armand N.A. Rasprostranenie shirokopolosnykh signalov v dispersnykh sredakh [Propagation of Broadband Signals in Dispersion Mediums]. Radiotekhnika i elektronika [Radio engineering and electronics]. 2003. Vol. 48, No 9. Pp. 1045-1057. (In Russ.).
15. Watterson C.C., Juroshek J., Bensema W.D. Experimental Confirmation of an HF Channel Model. IEEE Transactions on Communications. 1970. No. 6. Pp. 792-803.
16. Ivanov D. V. Iskazheniya v ionosfere dekametrovykh signalov s psevdosluchainoy rabochey chistotoy [Distortions of Decameter Signals with Pseudorandom Operating Frequency in the Ionosphere]. Radiotekhnika i elektronika [Radio Engineering and Electronics]. 2006. Vol. 51, No 7. Pp. 807-815. (In Russ.).
17. Ivanov D. V., Ivanov V. A., Chernov A. A. Teoreticheskie osnovy metoda pryamogo tsifrovogo sinteza radiosignalov dlya tsifrovykh system svyazi [The Theory of the Method of Direct Digital Synthesis of Radio Signals for Digital Communication Systems]. Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Ser. Radiotekhnicheskie i infokommunikatsionnye sistemy [Vestnik of Volga State University of Technology. Ser.: Radio Engineering and Infocommunication Systems]. 2012. No 1 (15). Pp. 3-34. (In Russ.).
18. Ivanov V. A., Ivanov D.V., Ryabova N.V., Tsarev I.V. Chislennye i polunaturnye issledovaniya funktsii rasseyaniya uzkopolosnykh dekametrovykh radiokanalov [Numerical and Seminatural Investigations of the Narrowband Decameter Radio Channel Scattering Function]. Elektromagnitnye volny i elektronnye sistemy [Electromagnetic Waves and Electronic Systems]. 2009. Vol. 14, No 8. Pp. 46-54. (In Russ.).
19. Cannon Paul S., Angling Matthew J., Lundborg Bengt. Characterization and Modeling of the HF Communications Channel. Review of Radio Science: 1999-2002. August 2002. No. Chapter 27. Pp. 597-623.
20. Zernov N. N., Gherm V. E., Zaalov N. Y. et al. The Generalisation of Rytov’s Method to the Case of Inhomogeneous Media and HF Propagation and Scattering in the Ionosphere. Radio Science. 1992. Vol. 2, No. 27. Pp. 235-244.
21. Davies N. C. Cannon P. S. DAMSON- A System to Measure Multipath Disper-sion, Doppler Spread and Doppler Shift / AGARD Symposium on Multi-Mechanism Communication Systems. Rotterdam, Netherlands. 1993. Vol. CP-543. Pp. 36.1-36.6.
22. Tikhonov V.I. Optimal'nyy priem signalov [Optimal Signal Reception]. Moscow: Radio i svyaz', 1983. 320 p. (In Russ.).
23. Arthur P. C., Maundrell M. J. Multi-Dimensional HF Modem Performance Characterisa-tion. 7th International Conference on HF Radio Sys-tems and Techniques 1997.
24. Otnes R. Improved Receivers for Digital High Frequency Communications: Iterative Channel Estimation, Equalization, and Decoding (Adaptive Turbo Equalization), Department of Telecommunica-tions Faculty of Information Technology, Mathemat-ics and Electrical Engineering Norwegian University of Science and Technology, A Dissertation Submitted In Partial Fulfillment of the Requirements for the Degree of Doktor Ingenior. 2002.
25. Brown D.J. Link maintenance and channel evaluation techniques for HF radiocommunication links, University of Leicester, PhD thesis. 2001.
26. Warrington E. M., Stocker A. J. Measure-ments of the Doppler and multipath spread of HF signals received over a path oriented along the mid-latitude trough. Radio Science. 2003. Vol. 38. No. 5. Pp. 1-12.
27. Stocker A. J., Warrington E. M., Siddle D. R. Observations of Doppler and delay spreads on HF signals received over polar cap and trough paths at various stages of the solar cycle. Radio Science. 2013. Vol. 48. Pp. 638–645.
28. Ivanov V. A., Ryabova N. V., Tsarev I. E. et al. Kanal'nyy zond dlya issledovaniya funktsiy rasseyaniya ionosfernykh VCh radiokanalov [The Chanel Probe for the Investigation of Ionospheric HF Radio Channel Scattering Functions]. Rasprostranenie radiovoln [Radio Wave Propagation]. 2008. Vol. 2. Pp. 45-48 (In Russ.).
29. Ivanov V. A., Ryabova N.V., Tsarev I. E. Diagnostika funktsii rasseyaniya dekametrovykh uzkopolosnykh stokhasticheskikh radiokanalov [Diagnostics of the Scattering Function of Decameter Narrowband Stochastic Radio Channels]. Radiotekhnika i elektronika [Radio Engineering and Electronics]. 2009. Vol. 55, No 3. Pp. 285-292 (In Russ.).
30. Arthur P. C., Lissimore M., Cannon P. C. et al. Application of a high quality ionosonde to ionospheric research. Seventh Int. Conf. on HF Radio Systems and Techniques. 1997. Vol. IEE Conf. Pub., 441. Pp. 135-139.
31. Cannon P.S., Angling M.J., Davies N.J. DAMSON HF Channel Characterisation - A review. 21st Century Military Communications Conference Proceedings. Vol. I, Session 2. Pp. 59-64.
32. Vilella С., Miralles D., Pijoan J. L. An Ant-arctica-to-Spain HF ionospheric radio link: Sounding results. Radio Science. 2008. Vol. 43. P. 17.
33. Bergadà P., Deumal M., Vilella C. et al. Remote Sensing and Skywave Digital Communication from Antarctica. Sensors. 2009. No. 9. Pp. 10136 – 10157.
34. Ads A. G., Bergadà P., Vilella C.et al. A comprehensive sounding of the ionospheric HF radio link from Antarctica to Spain. Radio Science. 2013. Vol. 48. Pp. 1-12.
35. Ivanov V.A., Ivanov D.V., Kolchev A.A. Korrektsiya shirokopolosnykh korotkovolnovykh ionosfernykh radiokanalov [Correction of Broadband Short-Wave Ionospheric Radio Channels]. Radiotekhnika i elektronika [Radio Engineering and Electronics]. 2003. Vol. 48, No 6. Pp. 688-697. (In Russ.).
36. Ivanov D. V., Ivanov V.A., Ryabova M.I. et al. Issledovaniya korrektsii dispersionnykh iskazheniy, voznikayushchikh v ionosfernykh radiokanalakh s polosoi 1 MGts [Investigations of the Correction of Dispersive Distortions Occurring in Ionospheric Radio Channels with a Band 1 MHz]. Elektromagnitnye volny i elektronnye sistemy [Electromagnetic waves and electronic systems]. 2008. Vol. 13, № 8. Pp. 58-66. (In Russ.).
37. Ivanov D.V. Metody i matematicheskie modeli issledovaniya rasprostraneniya v ionosfere slozhnykh dekametrovykh signalov i korrektsii ikh disper-sionnykh iskazheniy: monografiya [Methods and Mathematical Models of Research on the Propagation of Complex Decameter Signals in the Ionosphere and the Correction of their Dispersion Distortions]. Yoshkar-Ola: MARSTU, 2006. 268 p. (In Russ.).
38. Ivanov V. A., Ivanov D. V., Ryabova N. V. et al. Zondirovanie ionosfernykh kanalov vysokochastotnoy svyazi s poverkhnosti Zemli [The Sounding of the Ionospheric Channels of High-frequency Communication from the Surface of the Earth]. Vestnik Mariyskogo gosudarstvennogo tekhnicheskogo universiteta. Ser.: Radiotekhnicheskie i infokommunikatsionnye sistemy [Vestnik of Mari State Technical University. Ser.: Radio Engineering and Infocommunication Systems]. 2008. No 1 (2). Pp. 3-20. (In Russ.).
39. Ivanov V.A., Ivanov D.V., Ryabova N.V. et al. Kompleksnyy adaptivnyy algoritm obrabotki ionogramm vertikal'no-naklonnogo zondirovaniya ionosfery [Complex Adaptive Algorithm of Ionogram Processing of Vertical-Oblique Ionospheric Sounding]. Geliogeofizicheskie issledovaniya [Heliogeophysical research]. 2013. No 2 (4). Pp. 11-23. (In Russ.).
40. Ivanov V. A., Ivanov D. V., Ryabova N. V. et al. Kompleksnye metody obrabotki ionogramm vertikal'no-naklonnogo zondirovaniya dlya opredeleniya parametrov ionosfernykh kanalov svyazi [Integral Methods of the Processing of Ionograms of Vertical-Oblique Sounding for the Determination of Ionospheric Communication Chanel Parameters]. Uspekhi sovremennoy radioelektroniki [Success of modern radio electronics]. 2014. No 8. Pp. 11-21. (In Russ.).
41. Ivanov V.A., Kurkin V.I., Nosov V.E. et al. LChM ionozond i ego primenenie v ionosfernykh issledovaniyakh (obzor) [LFM Ionosonde and its Application in Ionospheric Research (Review)]. Izvestiya vysshikh uchebnykh zavedeniy. Radiofizika. [News of Universities. Radio Physics]. 2003. Vol. 46, No11. Pp. 919–952. (In Russ.).
42. Ivanov V. A., Ivanov D. V., Ryabova M. I. et al. Iskazhenie slozhnykh dekametrovykh radiosignalov v dispersnykh ionosfernykh radiokanalakh pri kvazizenitnom rasprostranenii [Sounding of the ionosphere and decametric communication channels by complex radio signals]. Vestnik Mariyskogo gosudarstvennogo tekhnicheskogo universiteta. Ser.: Radiotekhnicheskie i infokommunikatsionnye sistemy [Vestnik of Mari State Technical University. Ser.: Radio Engineering and Infocommunication Systems]. 2010. No 1 (8). Pp. 43-53. (In Russ.).
43. Ivanov D. V., Ivanov V. A., Ryabova N. V. et al. Sistema chastotnogo obespecheniya kanalov vch svyazi na baze novogo tsifrovogo ionozonda na platforme usrp [System of the Frequency Support of HF Communication Channels Based on a New Digital Ionosonde on the USRP Platform]. Sistemy sinkhronizatsii, formirovaniya i obrabotki signalov [Systems of synchronization, forming and processing of signals]. 2014. Vol. 5, No 4. Pp. 133-136. (In Russ.).
44. Vakman D. E. Slozhnye signaly i printsip neopredelennosti v radiolokatsii [Complex Signals and the Indeterminancy Principle in Radiolocation]. Moscow: Sovetskoe radio, 1965. 304 p. (In Russ.).
45. Varakin L.E. Teoriya slozhnykh signalov [Theory of Complex Signals]. Moscow: Sovetskoe radio, 1970. 376 p. (In Russ.).
46. Shirman Ya.D. Teoreticheskie osnovy radiolokatsii [Theory of Radiolocation]. Moscow: Sovetskoe radio, 1970. 560 p. (In Russ.).
47. Ivanov V. A., Ivanov D. V., Ryabova N. V. Zondirovanie ionosfery i dekametrovykh kanalov svyazi slozhnymi radiosignalami [The Sensing of the Ionosphere and Decameter Communication Channels by Complex Radio Signals]. Vestnik Mariyskogo gosudarstvennogo tekhnicheskogo universiteta. Ser. Radiotekhnicheskie i infokommunikatsionnye sistemy [Vestnik of Mari State Technical University. Ser.: Radio Engineering and Infocommunication Systems]. 2010. No 1 (8). Pp. 3-37. (In Russ.).
48. Ivanov V. A., Ryabova N. V., Shumaev V. V. Osnovy radiotekhnicheskikh sistem DKM diapazona [Basics of Radio Engineering Systems of a Decameter Range]. Yoshkar-Ola: MARSTU, 1998. 204 p. (In Russ.).
49. Ivanov D. V., Ivanov V. A., Ryabova N. V., Belgibaev R. R. Otsenka dostupnosti chastotnykh kanalov dlya razlichnykh modemov KV-svyazi na osnove passivnogo zondirovaniya mnogomernogo ionosfernogo radiokanala [Estimation of Frequency Channel Availability for Different HF communication Modems Based on the Passive Sounding of a Multi-Dimensional Ionospheric Radio Channel]. Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Ser. Radiotekhnicheskie i infokommunikatsionnye sistemy [Vestnik of Volga State University of Technology. Ser.: Radio Engineering and Infocommunication Systems]. 2017. No 2 (34). Pp. 39-53. (In Russ.).
50. Ivanov D. V., Ivanov V. A., Ryabova N.V. et al. LChM ionozond novogo pokoleniya na platforme USRP [LFM Ionosonde of a New Generation on the USRP Platform]. XX Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya: Radiolokatsiya, Navigatsiya, Svyaz' [XX International Scientific and Technical Conference: Radiolocation, Navigation and Communication]. Voronezh: Research and Manufacturing Company «SAKVOEE», 2014. Pp. 403-414. (In Russ.). 


For citation: Ivanov D. V., Ivanov V. A., Ryabova N. V., Belgibaev R. R. HF Communication Quality Level Increase when Using the Pre-session Diagnostics of a Multidimensional Ionospheric Radio Channel. Vestnik of Volga State University of Technology. Ser.: Radio Engineering and Infocommunication Systems. 2018. No 2 (38). Pp. 6-32. DOI: 10.15350/2306-2819.2018.2.6


© 2006-2025 Поволжский государственный технологический университет, ФГБОУ ВО «ПГТУ».
При использовании текстовой информации, фото- и видеоматериалов ссылка на сайт обязательна.

Разработано компанией «Цитрус»

Нашли ошибку?
Выделите текст с ошибкой и
нажмите Ctrl+Enter



Здесь тоже можно
прокручивать колесиком мыши