61-67

UDC 620.168.36
DOI: 10.15350/2306-2819.2018.1.61

INVESTIGATION OF TECHNOLOGICAL MODES OF RESISTIVE FILM
FORMATION BASED ON STAINLESS STEEL ELEMENTS OXIDES

A. V. Moroz
Volga State University of Technology,
3, Lenin Square, Yoshkar-Ola, 424000, Russian Federation
E-mail: MorozAV@volgatech.net

ABSTRACT

Introduction. Because of the need for the automation of the technological process of resistive films formation based on the 12х18н10т stainless steel elements oxide by the magnetron sputtering method, it is necessary to develop a mathematical model that will describe the given process adequately. The purpose of the work is the investigation of technological features of formation of resistive films of oxides and nitrides of stainless steel elements by the magnetron sputtering method.   To achieve the purpose, the following tasks were solved: 1) the rotatable central composite design was implemented for developing the mathematical model of the process;2) the mathematical model of the process of the second order was calculated; 3) the adequacy of the obtained model was experimentally proved. The result of the mathematical modeling of the technological process was the regression equation, describing the process of resistive films formation with an accuracy of 5 %.

where ρ is surface resistivity, Ohm/ ; η is oxygen concentration in the mixture of gases, in the range from 2 to 7 %, t is evaporation time, in the range from 10 to 600 sec.

The temperature coefficient of resistance (TCR) of films varies from positive to negative depending on the oxygen and nitrogen ratio in the working gaseous mixture when evaporating and it has values of the order of 10-4 Ohm/К. Conclusion. During research the mathematical model of the technological process of resistive films formation, based on the 12х18н10т stainless steel oxide was calculated by the reaction magnetron sputtering method. Model adequacy was experimentally proved. Practical significance. This model can be applied for the automation of thin-film resistors formation process in thin-film microelectronics.

KEYWORDS

technological process automation; mathematical model; rotatable central composite design; resistors; magnetron sputtering; stainless steel; thin films

FULL TEXT (pdf)

REFERENCES

1. Dostanko A.P., Zalessky V.G., Rusetseiy A.M. et al. Tekhnologicheskie protsessy i sistemy v mikroelektronike: plazmennye, elektronno-ionno-luchevye, ul'trazvukovye [Technological Processes and Systems in Microelectronics: Plasma, Electronic-Ionic-Beam, Ultrasonic]; edited by A.P. Dostanko. Minsk: Besprint, 2009. 199 p.
2. Berlin E.V., Dvinin S.A., Seidman L.A. Vakuumnaya tekhnologiya i oborudovanie dlya naneseniya i travleniya tonkikh plenok [Vacuum Technology and Equipment for Applying and Etching Thin Films]. Moscow: Technosphere, 2007. 176 p.
3. Katnani A.D., Matienzo L.J., Emmi F. Effects of oxidation on the electrical resistance of cermet thin films. Journal of Materials Science Letters. 1989. No 8. P. 1177 – 1178.
4. Nash C. R., Fenton J.C., Constantino N. G. N., Warburton P. A. Compact chromium oxide thin _lm resistors for use in nanoscale quantum circuits. Journal of Applied Physics. 2014. Vol. 116. No 22. [Electronic Resource]. URL: https://arxiv.org/pdf/1407.8467.pdf
5. Korzh I.A., Kuznetsov A.N. Tonkie rezistivnye plenki na osnove soedineniy tantala dlya izgotovleniya moshchnykh vch-nagruzok i attenyuatorov [Thin Resistive Films Based on Tantalum Compounds for Making Powerful HF-Loads and Attenuators]. Tekhnika radiosvyazi [Radio Communications Engineering]. 2016. No 4 (31). Pp. 69-76.
6. Arshi N., Lu J., Joo Y.K., Yoon J.H., Koo B.H. Effects of nitrogen composition on the resis-tivity of reactively sputtered TaN thin films. Surface and Interface Analysis. 2015. Vol. 47. P. 154–160.
7. Vasiliev V.A., Hoshev A.V. Uslovie polucheniya odnorodnykh nanorazmernykh rezistivnykh plyonok NiTi metodom magnetronnogo raspyleniya iz dvukh istochnikov [Condition of Obtaining Uniform Nanodimensional Resistive Films NiTi by the Magnetron Sputtering Method from Two Sources]. Izvestiya Tomskogo politekhnicheskogo universiteta. Matematika i mekhanika. Fizika [News of Tomsk Polytechnic University. Mathematics and Mechanics. Physics] 2014. Vol. 325. No 2. Pp. 173-179.
8. Sujatha K., Uthanna S., Jayarama Reddy P. Electrical properties of co-evaporated Bi-SiO cermet films. Journal of Materials Science Letters. 1989. No 8. P. 75–76.
9. Katumba G., Olumekor l. Effects of thickness and composition on the resistivity of Cu-MgF2 cermet thin film resistors. Journal of Materials Science. 2000. No 35. P. 2557–2559.
10. Moroz A. V., Sushentsov N. I., Stepanov S. A. et al. Tekhnologicheskie osobennosti formirovaniya rezistivnyh plyonok na osnove nerzhaveyushchej stali [Technological Aspects of Resistive Film Formation on the Basis of Stainless Steel]. Vestnik Povolzhskogo gosudarstvennogo tekhno-logicheskogo universiteta. Seriya: Radiotekhnicheskie i infokommunikatsionnye sistemy [Vestnik of Volga State University of Technology. Ser.: Radio Engineering and
Infocommunication Systems]. 2016. No 2 (30). Pp. 84-89.
11. Gaskarov D.V., Goloskokov K.P., Shkabardnya A.V. Primenenie matematicheskogo programmirovaniya v diskriminantnom analize dlya resheniya zadachi prognozirovaniya [Application of Mathematical Programming in the Discriminant Analysis for Solving Forecasting Problems]. Avtomatika i telemekhanika [Automatics and telemechanics]. 1988. No 7. Pp. 174-181.
12. Bogdanovich V.I., Barvinok V.A., Nebo­ga V.G. et al. Optimizatsiya termicheskogo tsikla nagreva tonkoplyonochnogo polimera pri poluchenii nanostrukturnykh ionno-plazmennykh pokrytiy [Optimization of Thin-Film Polymer Heating Thermal Cycle When Obtaining Nanostructural Ion-Plasma Sprayed Coating]. Problemy mashinostroeniya i avtomatizacii [Problems of machine-building and automation]. 2013. No 4. Pp. 22-27. 

For citation: Moroz A. V. Investigation of Technological Modes of Resistive Film Formation Based on Stainless Steel Elements Oxides. Vestnik of Volga State University of Technology. Ser.: Radio Engineering and Infocommunication Systems. 2018. No 1 (37). Pp. 61-67. DOI: 10.15350/2306-2819.2018.1.61


© 2006-2025 Поволжский государственный технологический университет, ФГБОУ ВО «ПГТУ».
При использовании текстовой информации, фото- и видеоматериалов ссылка на сайт обязательна.

Разработано компанией «Цитрус»

Нашли ошибку?
Выделите текст с ошибкой и
нажмите Ctrl+Enter



Здесь тоже можно
прокручивать колесиком мыши